# The Crystal Structure of the Monohydrated Potassium Salt of 4-Hydroxy-5,7-Dinitrobenzfurazan

## BY M. MATHEW AND GUS J. PALENIK

Department of Chemistry, University of Florida, Gainesville, Florida 32601, U.S.A.

#### (Received 11 August 1970)

The crystal and molecular structure of the hydrated potassium salt of 4-hydroxy-5,7-dinitrobenzfurazan,  $K^+[OC_6H(NO_2)_2N_2O]^-$ .  $H_2O$ , has been determined by X-ray diffraction techniques. The complex crystallizes as bright yellow, monoclinic needles with  $a = 10.944 \pm 0.010$ ,  $b = 4.694 \pm 0.004$ ,  $c = 21.310 \pm 0.010$  Å and  $\beta = 117.42 \pm 0.08^\circ$ , measured at room temperature. The space group is  $P2_1/c$  and with four molecules of the monohydrate (M.W. 282.2) per unit cell, D = 1.921 g.cm<sup>-3</sup> compared with  $D_m = 1.91$  g.cm<sup>-3</sup>. The structure was solved by the heavy-atom method and refined by full-matrix least-squares methods to a final R of 0.081 for the 1321 observed reflections, measured by the stationary-crystal stationary-counter technique with molybdenum radiation. The C–O bond length of  $1.234 \pm 0.008$  Å is close to the C–O double-bond distance. The resulting distortions in the ring are similar to those found in potassium picrate, modified by the furazan system. A C–H (ring)...O (nitro) hydrogen bond appears to exist in the crystal.

#### Introduction

The crystal structure of potassium and ammonium picrate (Maartmann-Moe, 1969) revealed a very strong interaction of the deprotonated phenol oxygen with the aromatic ring. In fact, the term 'benzene ring' may not be appropriate since the distortions in the ring are so extreme. Subsequently, a comparison of the Meisenheimer complex of trinitrophenetole (Destro, Gramaccioli & Simonetta, 1968) with a similar dinitrobenzfurazan complex led Messmer & Palenik (1971) to conclude that the furazan ring had a greater electron withdrawing power than a nitro group. Therefore, the potassium salt of 4-hydroxy-5,7-dinitrobenzfurazan should exhibit distortions similar to potassium picrate but perturbed by the furazan system. We undertook an investigation of the structure of the potassium salt of 4-hydroxy-5,7-dinitrobenzfurazan, henceforth K+ HDNBF, to examine the interaction in salts of nitrophenols and also the electron withdrawing power of the furazan ring.

#### Experimental

Bright yellow needles of K<sup>+</sup>[C<sub>6</sub>HN<sub>4</sub>O<sub>6</sub>]<sup>-</sup>.H<sub>2</sub>O were obtained by recrystallization from water. Preliminary Weissenberg photographs indicated that the crystals are monoclinic with the systematic absences of hol for l=2n+1 and 0k0 for k=2n+1, suggesting that the space group is  $P2_1/c$  ( $C_{2h}^5$ ).

A crystal of dimensions  $0.10 \times 0.18 \times 0.08$  mm (parallel to **a**, **b** and **c** respectively) which was dipped in liquid nitrogen to minimize extinction effects was used for the intensity measurements. The resulting mosaic spread of the crystal was sufficiently smaller (peak width at half-height was less than  $0.1^\circ$  at a  $1^\circ$  take-off angle) than the effective source width at the  $4^\circ$  take-off angle used for the intensity measurements. The unit-cell dimensions determined from diffractometer measurements are given in Table 1. Diffraction data for reflections in a hemisphere with  $2\theta < 60^{\circ}$  (Mo K $\alpha$ ,  $\lambda(\alpha_1) = 0.70926$ Å) were measured using the stationary crystal-stationary counter method. A 20 sec count was taken for each reflection with a zirconium filter in front of the counter window. A General Electric XRD-5 diffractometer controlled by a prepunched paper tape was used for measuring the intensity data. Four standard reflections which were measured after every 100 reflections were used to correct the data for a slight decrease (maximum 9%) in the intensity with time. A background curve as a function of  $2\theta$  was derived from the systematically absent reflections which were not affected by a radiation streak. A total of 2862 unique reflections was obtained after averaging symmetry equivalent reflections, and the 1321 reflections which were greater than or equal to 1.2 times the appropriate background count were considered to be observed; the remaining reflections were considered to be unobserved and entered as 0.1 times the local background count and flagged with a minus sign. Since the linear absorption coefficient for Mo K $\alpha$  is only 5.7 cm<sup>-1</sup>, no absorption corrections were applied (the maximum error in an intensity is 9%). The  $\alpha_1 - \alpha_2$  doublet could be contained within the counter window under the experimental conditions employed (take-off angle was  $3.7^{\circ}$ ) and no correction for the splitting was applied. The intensity data were reduced to a set of observed amplitudes on an arbitrary scale in the usual manner.

### Table 1. Crystal data

| $a = 10.944 \pm 0.010$ Å            | $K[C_6HN_4O_6]$ . $H_2O$        |
|-------------------------------------|---------------------------------|
| $b = 4.694 \pm 0.004$               | M.W. 282·2                      |
| $c = 21.310 \pm 0.010$              | Z=4                             |
| $\beta = 117.42 \pm 0.08^{\circ}$   | $D_m = 1.91 \text{ g.cm}^{-3}$  |
| Space group $P2_1/c$ ( $C_{2h}^5$ ) | $D_x = 1.921 \text{ g.cm}^{-3}$ |

The position of the potassium ion was determined from a sharpened three-dimensional Patterson function. A Fourier synthesis based on phases determined by the potassium ion alone yielded the positions of the atoms in the anion. A computed difference Fourier synthesis, using the anion and cation for phasing, was utilized to locate the water molecule. At this point the conventional R value  $(R = \Sigma |\Delta F| / \Sigma F_o)$  was 0.18.

Four full-matrix least-squares cycles using individual isotropic thermal parameters reduced R to 0.12. The thermal parameters were converted to their anisotropic



Fig. 1. A projection of the structure on the (010) plane illustrating the molecular packing. The hydrogen bonds are shown as dotted lines.

equivalent form and four full-matrix least-squares cycles reduced R to 0.081. The shifts in the parameters in the last cycles were all less than  $0.1\sigma$  and thus the refinement was considered completed. The final parameters are given in Table 2. The structure factors calculated with these parameters are presented in Table 3 together with the corresponding observed values. A final difference Fourier synthesis was computed using the heavier atom parameters given in Table 2. The three hydrogen atoms were easily located and their coordinates are given in Table 2. The contribution of the hydrogen atoms were not included in any of the calculations.

The quantity minimized by the least-squares calculations was  $\Sigma w(|F_o| - |F_c|)^2$  where the weights were as follows:

$$y'w = |F_o|/2 F_{\min} \text{ if } F_o < 2 F_{\min}$$

$$y'w = 1 \text{ if } 2 F_{\min} \le F_o \le 6 F_{\min}$$

$$y'w = 6 F_{\min}/|F_o| \text{ if } F_o > 6 F_{\min}$$

and where  $F_{\min}$  is the nominal minimum observable F, in this case 4.2 (or 42 on the scale of Table 3). Atomic scattering factors for all atoms were taken from the *International Tables for X-ray crystallography* (1962)

#### Discussion

The crystal consists of  $K^+$ ,  $[OC_6H(NO_2)_2N_2O]^-$  ions and a water molecule packed together (as illustrated in Fig. 1) with no unusually short intermolecular contacts. The  $K^+$  ion is surrounded by 8 oxygen atoms and a nitrogen atom at distances from 2.858 to 3.112 Å. The atoms of the coordination polyhedra about the  $K^+$ ion and their distances are tabulated in Table 4. The

Table 2. Final parameters with estimated standard deviations in parentheses

All values are multiplied by 104. The temperature factor is of the form: exp  $\left[-(\beta_{11}h^2+\beta_{22}k^2+\beta_{33}l^2+\beta_{12}hk+\beta_{13}hl+\beta_{23}kl)\right]$ .

|                         | x        | у           | z        | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
|-------------------------|----------|-------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|
| к                       | 6849 (2) | 6662 (5)    | 3249 (1) | 121 (2)      | 607 (11)     | 26 (1)       | 28 (9)       | 58 (2)       | 31 (4)       |
| $\tilde{\mathbf{O}}(1)$ | 8606 (6) | 1715 (16)   | 3831 (3) | 129 (7)      | 939 (48)     | 25 (1)       | 177 (33)     | 51 (5)       | 19 (15)      |
| čůí                     | 6525 (6) | 1195 (16)   | 1804 (3) | 81 (6)       | 419 (39)     | 14 (1)       | 40 (26)      | 17 (5)       | 25 (12)      |
| $\tilde{C}(2)$          | 6080 (6) | - 705 (16)  | 1216 (3) | 82 (6)       | 401 (36)     | 16 (1)       | -22 (26)     | 28 (5)       | 6 (12)       |
| $\tilde{C}(3)$          | 6586 (6) | - 689 (16)  | 718 (3)  | 82 (6)       | 401 (37)     | 14 (1)       | 20 (27)      | 19 (5)       | 12 (11)      |
| Č(4)                    | 7610 (7) | 1145 (16)   | 768 (3)  | 94 (7)       | 433 (38)     | 13 (1)       | 1 (28)       | 27 (5)       | 11 (11)      |
| Č(Š)                    | 8173 (6) | 3076 (17)   | 1348 (3) | 70 (6)       | 434 (39)     | 16 (1)       | 22 (27)      | 20 (5)       | 7 (13)       |
| Č(6)                    | 7641 (6) | 3080 (16)   | 1837 (3) | 85 (6)       | 333 (34)     | 15 (1)       | 35 (27)      | 18 (5)       | 14 (12)      |
| N(1)                    | 5060 (6) | - 2832 (14) | 1110 (3) | 87 (6)       | 442 (35)     | 21 (1)       | 45 (24)      | 28 (5)       | 4 (11)       |
| N(2)                    | 8070 (6) | 1049 (15)   | 243 (3)  | 104 (6)      | 586 (40)     | 17 (1)       | -27 (28)     | 40 (5)       | -18 (12)     |
| N(3)                    | 9123 (6) | 5046 (14)   | 1532 (3) | 88 (6)       | 464 (35)     | 19 (1)       | -20 (25)     | 28 (5)       | -1 (12)      |
| N(4)                    | 8241 (6) | 5029 (14)   | 2315 (3) | 85 (5)       | 439 (32)     | 17 (1)       | 26 (24)      | 23 (4)       | -9 (12)      |
| O(2)                    | 6113 (5) | 1445 (13)   | 2252 (2) | 109 (5)      | 641 (35)     | 18 (1)       | - 86 (25)    | 46 (4)       | - 37 (11)    |
| <b>O</b> (3)            | 4603 (6) | - 2993 (14) | 1539 (3) | 152 (7)      | 572 (35)     | 32 (2)       | -122 (28)    | 85 (6)       | - 55 (13)    |
| Q(4)                    | 4722 (6) | - 4484 (13) | 616 (3)  | 127 (7)      | 549 (34)     | 28 (2)       | -151 (25)    | 54 (5)       | - 69 (12)    |
| O(5)                    | 7551 (6) | -646(15)    | -244 (3) | 178 (8)      | 725 (41)     | 25 (1)       | - 104 (31)   | 81 (6)       | - 69 (13)    |
| O(6)                    | 8976 (6) | 2722 (16)   | 304 (3)  | 146 (7)      | 959 (50)     | 30 (2)       | -270 (33)    | 83 (6)       | - 84 (15)    |
| O(7)                    | 9168 (5) | 6288 (12)   | 2136 (2) | 83 (5)       | 504 (31)     | 22 (1)       | -40 (21)     | 25 (4)       | - 26 (10)    |
| H(1)                    | 8860     | 1670        | 4310     |              |              |              |              |              |              |
| H(2)                    | 9430     | 1560        | 3900     |              |              |              |              |              |              |
| H(3)                    | 6250     | - 1940      | 300      |              |              |              |              |              |              |

 $K^+$  ion is approximately in the center of a distorted trigonal prism, with the three remaining atoms roughly in the center of each rectangular face. The result is approximately a 3-3-3 type of nine coordination. The

 $O \cdots O$  distances in the triangular faces [3.214 Å for O(1) to O(2), 3.032 Å for O(2) to O(3') and 2.904 Å for O(3') to O(1)] are close to the value for van der Waals contacts.

## Table 3. Observed and calculated structure amplitudes

The three columns in each group contain the values, reading from left to right, of l,  $10F_o$  and  $10F_o$ . A negative  $F_o$  indicates an unobserved reflection which was not included in the least-squares refinement.

| L, FO. FC<br>H= -13. K= 0                                           | L F0 FC<br>H= -4, K= 0                                              | L FO FC<br>D 350 -314<br>2 319 -294                              | L FO FC<br>20 -25 18<br>21 -25 -5                                     | L FO FC<br>5 107 -102<br>6 -26 -40                                   | L PO PC<br>25 -26 -18<br>26 71 61                                 | L FO FC<br>15 -25 29<br>16 -26 0                                                                                 | L FO FC<br>20 -25 -20<br>21 50 -57                                | L FO FC<br>12 72 88<br>13 -28 3                                      | L FO FC<br>7 73 -69<br>8 -24 41                                  | L FG FC                                                          | L FO FC<br>21 -25 -43<br>22 -25 -20                                           | L FO FC<br>22 79 -47<br>23 -25 -15                                  | L FO FC                                                          |
|---------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|
| 8 -26 -15<br>10 79 64<br>12 49 -49<br>14 -26 1                      | 2 572 571<br>4 499 -485<br>6 89 83<br>8 306 -258                    | • 43 -70<br>• -25 31<br>10 117 116<br>12 -25 -12                 | 22 -25 -1<br>23 50 -42<br>24 97 96<br>25 -25 13<br>26 -26 -6          | 8 760 788<br>9 253 264<br>10 206 -214<br>11 -25 31                   | H- 1, K- 1<br>0 409 397<br>1 420 -409                             | H- 8, K- 1<br>0 -20 -20                                                                                          | 22 -25 25<br>23 -25 35<br>24 -25 -33<br>25 50 44<br>24 -26 -10    | 14 282 -290<br>15 508 -308<br>16 109 -126<br>17 53 -64<br>18 236 219 | 10 150 -148<br>11 297 -290<br>12 -24 9<br>13 226 231             | H- 9, K- 2<br>1 57 -59                                           | 24 -24 -34<br>25 57 55<br>24 -24 -29                                          | 25 46 35                                                            | 15 64 -59<br>16 -25 -26<br>17 -25 -15<br>18 -26 1                |
| 10 -26 23<br>H= -14, K= 0                                           | 12 646 590<br>14 90 95<br>16 233 -225<br>18 212 199                 | 16 31 14<br>H- 8, K- 0                                           | 28 -24 23<br>He -10, Ke 1                                             | 13 % 99<br>14 -27 15<br>15 99 99<br>16 175 -182                      | 1 1154 1153<br>4 593 -572<br>5 42 -47<br>6 -24 70                 | 2 62 63 9<br>3 51 -65<br>4 -25 -32<br>5 125 -116                                                                 | M -10, K+ 2<br>1 -25 2<br>2 60 -62                                | 20 105 -103<br>21 51 55<br>22 56 -61<br>23 50 -55                    | 15 46 -43<br>14 188 -197<br>17 159 -135<br>18 93 96              | 3 91 -91<br>4 -25 6<br>5 -25 54<br>6 59 -58                      | 1 47 98<br>2 -25 -25<br>3 121 -135                                            | 2 110 -108<br>3 57 -69<br>4 334 279<br>5 -26 -28                    | H= 5, K= 3<br>0 -28 -16                                          |
| 4 -26 8<br>6 41 -37<br>8 45 38<br>10 -25 21                         | 20 49 -31<br>22 184 -176<br>24 87 86<br>26 -25 -30<br>28 36 -46     | 2 58 52<br>4 -26 -12<br>6 199 -190<br>8 41 33                    | 2 -25 -50<br>3 -25 19<br>4 -25 -1<br>5 -25 -9                         | 17 117 -110<br>18 61 67<br>19 100 102<br>20 85 -71<br>21 106 -101    | 7 202 -200<br>8 96 -64<br>9 348 -530<br>10 117 -109<br>11 45 39   | 6 173 -168<br>7 60 -61<br>8 97 99<br>9 118 118<br>10 -25 32                                                      | 3 -23 0<br>4 58 -49<br>5 84 105<br>6 -25 42<br>7 84 -90           | 24 -25 19<br>25 -25 22<br>26 -25 -25<br>27 50 -52<br>28 -26 -17      | 10 42 51<br>20 83 88<br>21 -25 -23<br>22 -25 -11<br>23 45 52     | 9 -25 -17<br>9 -25 -48<br>10 -25 29<br>11 -26 48                 | 6 66 -58<br>5 169 192<br>6 -25 -17<br>7 -25 18<br>8 87 75                     | 6 131 277<br>7 43 59<br>8 -27 15<br>9 -28 -24<br>10 -28 37          | 2 105 120<br>3 232 -227<br>4 96 -105<br>5 44 75                  |
| 12 79 25<br>14 -25 17<br>16 -25 -14<br>18 57 46<br>20 101 81        | N= -3, K= 0<br>2 806 -835<br>4 522 488                              | 10 126 133<br>12 97 -80<br>16 -26 -21<br>H= 9, K= 0              | 6 62 58<br>7 145 145<br>8 163 -137<br>9 -26 32<br>10 139 -115         | 22 118 -101<br>23 132 -122<br>24 -25 22<br>25 -25 -14<br>24 -25 5    | 12 178 -176<br>13 165 -170<br>14 67 78<br>15 -28 58<br>16 -27 -40 | 11 -25 -11<br>12 -25 13<br>13 37 37<br>14 -24 21<br>15 -24 15                                                    | -25 26     -25 39     10 -25 23     11 60 62     12 -25 -15       | H+ -4, K- Z<br>1 192 190<br>2 -24 30                                 | 24 -26 -57<br>H= 2, K= 2<br>0 -24 -58                            | 12 -24 -8<br>H+ 10, K+ 2<br>Q -23 -30                            | 9 110 -123<br>10 -25 -2<br>11 166 180<br>12 -25 23<br>13 93 -112              | 11 -28 -15<br>12 -28 -1<br>13 181 171<br>14 -27 7<br>15 244 -209    | 4 315 -244<br>7 -25 49<br>8 36 -59<br>9 212 -213<br>10 -25 -9    |
| 22 70 -50<br>H= -13, K= 0<br>2 123 -E10                             | 6 92 -51<br>8 1042 -994<br>10 431 -376<br>12 375 352<br>14 413 -383 | 0 46 48<br>2 -25 16<br>4 87 -71<br>6 126 115                     | 11 -26 0<br>12 126 129<br>13 -25 5<br>14 94 -102<br>15 108 -127       | 27 -25 -14<br>28 45 -49<br>29 54 -49                                 | 17 -25 40<br>18 46 -71<br>19 40 74<br>20 -25 -8<br>21 -25 36      | H* 9, K* 1<br>0 165 146<br>1 223 206                                                                             | 13 44 -71<br>14 104 117<br>15 101 -117<br>14 -25 20<br>17 87 95   | 3 420 -380<br>4 434 380<br>5 -24 35<br>6 -24 0<br>7 -24 -30          | 1 171 170<br>2 293 -263<br>3 -24 -15<br>4 149 -147<br>5 102 97   | 1 -25 -44<br>2 -25 6<br>3 86 77<br>4 -25 23<br>5 93 -100         | 14 -25 -48<br>15 155 -171<br>16 48 -70<br>17 96 106<br>18 -25 23              | 16 -25 12<br>17 62 54<br>18 76 70<br>19 65 65<br>20 -25 17          | 11 151 134<br>12 -25 42<br>13 -25 -29<br>14 -25 -2<br>15 -25 -21 |
| 4 -25 -14<br>4 77 43<br>8 -25 -5<br>10 105 -94<br>12 109 84         | 16 202 202<br>18 172 157<br>20 225 -218<br>22 267 249<br>24 65 56   | 8 192 -172<br>10 166 -167<br>12 162 149<br>He 10, 14 0           | 14 -25 10<br>17 64 91<br>18 -25 13<br>19 65 56<br>20 62 -46           | 1 332 323<br>2 408 -353<br>3 383 368<br>4 541 -218                   | 22 -23 -12<br>23 94 -98<br>24 -24 15<br>25 -26 -29                | 2 210 -189<br>3 -25 -11<br>4 -25 -8<br>5 -25 -25<br>6 -25 40                                                     | 10 42 -39<br>19 65 -70<br>20 -25 35<br>21 -25 -24<br>22 39 44     | 8 148 -151<br>9 333 -326<br>10 257 271<br>11 312 325<br>12 100 -112  | 6 133 113<br>7 121 122<br>8 359 -366<br>9 167 -166<br>10 -28 57  | 6 -25 1<br>7 -25 7<br>8 -26 9<br>9 -26 7                         | 19 -25 14<br>20 -25 -25<br>21 63 -67<br>22 -25 20<br>23 -25 23                | 21 -25 -41<br>22 -25 29<br>23 -25 -4<br>24 -26 -15<br>25 -26 0      | 16 -26 2<br>17 -26 19<br>H= 6, K= 3                              |
| 14 -25 7<br>16 -25 -32<br>18 94 90<br>20 41 -21<br>22 -25 30        | 26 -25 -35<br>28 96 93<br>H= -2, K= 0                               | 0 96 91<br>2 155 -137<br>4 125 112<br>6 32 46                    | 21 -25 -23<br>22 87 94<br>23 43 54<br>24 -25 -18<br>25 -25 16         | 5 102 -96<br>6 419 474<br>7 536 572<br>8 101 -96<br>9 150 147        | H= 2, K= 1<br>0 403 544<br>1 1434 -1415<br>2 1400 1377            | 7 -25 -33<br>8 115 -106<br>9 55 -66<br>10 62 62<br>11 38 -36                                                     | 23 -23 4<br>24 -25 -38<br>23 52 -42<br>26 -26 38<br>27 47 55      | 13 -27 -11<br>14 -28 43<br>15 284 -266<br>16 -28 -38<br>17 -27 -36   | 11 92 101<br>12 -28 -29<br>13 218 214<br>14 62 60<br>15 -25 17   | H= 11, K= 2<br>0 69 65<br>1 -25 7<br>2 61 -69                    | 24 -25 9<br>25 -26 -25<br>26 -26 -5                                           | H= -1, K= 3<br>1 -25 -49<br>2 73 60                                 | 0 -28 1<br>1 74 -75<br>2 -27 -46<br>3 104 113<br>4 156 147       |
| 24 103 80<br>24 -26 0<br>H= -12, 4= 0                               | 2 360 -419<br>4 161 130<br>8 1166 -1166<br>8 547 -536<br>10 40 -45  | 10 03 -07<br>H- 11, K- D                                         | 26 39 -34<br>27 64 -63<br>28 52 58<br>89, 8- 1                        | 10 -24 8<br>11 -24 -12<br>12 71 86<br>13 63 64<br>14 137 133         | 3 -24 24<br>4 707 -710<br>5 242 -297<br>6 246 293<br>7 149 189    | 12 -26 -38<br>13 -26 10<br>H= 10, K= 1                                                                           | 1 -25 -3<br>2 106 100                                             | 18 121 -114<br>19 105 -109<br>20 90 -89<br>21 152 -137<br>22 -25 22  | 10 40 65<br>17 -25 45<br>18 -25 -37<br>19 58 59<br>20 -25 9      | 3 37 60<br>4 -25 -27<br>5 -26 -31<br>6 -26 -3<br>7 -26 -15       | 1 -26 -44<br>2 -26 -51<br>3 -27 -15<br>6 -27 -36                              | 5 -25 -22<br>4 247 -218<br>5 450 376<br>6 -26 43<br>7 445 -413      | 5 266 -237<br>6 -25 27<br>7 -25 16<br>8 -25 -8<br>9 81 73        |
| 4 -15 28<br>4 54 -30<br>8 180 -164<br>10 90 80                      | 14 -25 19<br>14 -25 19<br>16 158 -134<br>18 331 312<br>20 373 364   | 2 43 -45<br>4 87 75<br>6 50 -50<br>6 51 44                       | 1 140 -146<br>2 43 68<br>3 -28 -27<br>4 104 103                       | 15 57 -68<br>16 127 -118<br>17 318 -307<br>18 -28 -4<br>19 49 55     | 9 209 205<br>10 155 -155<br>11 -27 -9<br>12 142 149               | 0 30 -41<br>1 -25 0<br>2 -25 -7<br>3 -25 -20<br>4 -23 10                                                         | 5 92 115<br>6 -26 1<br>7 90 -101                                  | 23 138 417<br>24 63 -57<br>25 -25 -16<br>26 67 -22<br>27 -26 -3      | 22 94 101<br>23 -26 -30<br>Ha 3, Ka 2                            | 0 -25 15<br>1 -25 14                                             | 6 46 -83<br>7 -27 -23<br>8 -27 -17<br>9 -27 31                                | 9 194 170<br>10 114 91<br>11 73 72<br>12 -26 -43                    | 11 40 -43<br>12 -25 -51<br>13 -25 0<br>14 -25 5                  |
| 14 50 -45<br>14 6L 42<br>18 88 -87<br>20 48 -35                     | 24 42 -29<br>24 64 61<br>28 54 45                                   | He 12, E. 0<br>0 135 101<br>2 -25 23                             | 135 -128<br>7 71 -09<br>120 121<br>52 61                              | 21 -25 0<br>22 64 74<br>23 69 -69<br>24 -25 31                       | 14 138 -160<br>13 82 -90<br>16 -25 50<br>17 47 51                 | 4 37 -53<br>7 -25 -15<br>8 38 -37<br>9 -26 54                                                                    | • 147 130<br>10 -24 -41<br>11 75 -92<br>12 -24 14                 | H= -3, K= 2<br>1 128 -141                                            | 0 -24 17<br>1 298 -279<br>2 350 332<br>3 140 138                 | 3 -24 -27<br>H= 13, K= 2                                         | 11 -24 50<br>12 157 176<br>13 -25 -11<br>14 122 145                           | 14 -26 67<br>15 164 148<br>16 -25 -6<br>17 -25 12                   | 16 -26 14<br>H= 7, K= 3                                          |
| 24 60 -36<br>24 38 41<br>He -11, K* 0                               | 2 349 -372<br>4 379 +26<br>4 373 -318<br>8 452 453                  | 2- 13, K- 0                                                      | 11 247 271<br>12 359 -344<br>13 101 118<br>14 75 91                   | 24 113 -105<br>27 52 -50<br>28 -24 24<br>29 -24 13                   | 10 -25 -30<br>20 40 -77<br>21 88 105<br>22 -52                    | H= 11, K= 1<br>0 -25 -2<br>1 -25 -7                                                                              | 14 92 116<br>15 70 89<br>16 -25 -39<br>17 152 -160                | 3 765 689<br>4 179 -179<br>5 210 -210<br>6 251 255<br>7 182 -178     | 5 645 604<br>6 214 -205<br>7 332 -329<br>8 245 251<br>9 178 148  | H= -13, E= 3<br>4 -24 -11<br>5 -24 32                            | 16 -25 -38<br>17 -25 -25<br>15 -25 12<br>19 71 -72<br>20 -25 12               | 19 87 -75<br>20 -25 -30<br>21 -25 11<br>22 -25 -1<br>23 -24 45      | 1 96 92<br>2 40 56<br>3 76 93<br>4 -25 14<br>5 82 -84            |
| 2 52 50<br>4 47 45<br>4 -25 32<br>8 74 48<br>10 384 -352            | 10 301 -310<br>12 118 124<br>14 -26 9<br>16 432 -426<br>18 228 -234 | H15, K- 1<br>9 -24 27<br>10 -26 -23                              | 16 -26 32<br>17 82 90<br>18 209 -221<br>19 130 -145<br>20 61 66       | 1 375 376<br>2 751 -746<br>3 773 -750                                | 24 38 47<br>H- 3, K- 1<br>0 310 272                               | 2 -25 29<br>3 -23 37<br>4 -25 -18<br>5 -25 -7<br>4 -52 42                                                        | 19 45 60<br>20 48 58<br>21 -25 -16<br>22 -25 -18<br>23 99 -90     | 8 113 98<br>9 74 76<br>10 72 44<br>11 100 112<br>12 151 -148         | 10 62 70<br>11 53 65<br>12 65 -100<br>13 111 -113<br>14 -25 11   | 6 -26 15<br>7 -26 -27<br>8 -24 3<br>9 -26 32<br>10 -26 21        | 21 57 49<br>22 51 51<br>23 -25 -31<br>24 -25 5<br>25 -26 -14                  | 24 -26 13<br>M- 0, K- 3<br>1 -24 -18                                | 6 -25 24<br>7 45 59<br>8 -25 30<br>9 -25 -29<br>10 -25 16        |
| 12 171 -169<br>14 155 166<br>16 139 -142<br>18 60 -70<br>20 121 114 | 20 192 180<br>22 -25 -23<br>24 76 81<br>26 50 46                    | 11 -24 -7<br>12 -24 -35<br>13 45 -29<br>14 44 50<br>15 40 25     | 21 -25 6<br>22 -25 15<br>23 -25 -12<br>24 -25 -19<br>25 -25 -28       | 4 520 502<br>5 48 -48<br>4 120 -137<br>7 324 -312<br>8 97 -97        | 1 450 614<br>2 431 -435<br>3 437 -452<br>4 497 505<br>5 74 83     | 7 -26 -4<br>8 -26 13<br>H= 12, K= 1                                                                              | 24 -25 •<br>25 •4 -50<br>24 -25 -25<br>27 -26 2<br>28 -24 3       | 13 188 -180<br>14 -28 29<br>15 258 235<br>16 -28 -35<br>17 -27 0     | 15 -25 21<br>16 -25 50<br>17 -25 20<br>18 -25 -35<br>19 -25 4    | 11 -26 -16<br>12 -26 25<br>13 -26 -15<br>14 46 -29<br>15 69 57   | 20 -20 34<br>H= -6, X= 3<br>1 -28 48                                          | 2 -25 22<br>3 133 126<br>4 -25 17<br>5 264 -238<br>6 -27 27         | 11 -25 -57<br>12 -25 0<br>13 -26 9<br>14 -26 -40                 |
| 24 -25 -10<br>24 -25 21<br>24 -25 21<br>24 -24 -34                  | 2 305 -361<br>4 414 -395<br>6 544 592                               | 17 47 -11<br>18 -26 -9<br>He -14, Ke 1                           | 24 -25 29<br>27 -25 6<br>24 -24 -33<br>29 -24 0                       | * 300 -270<br>10 594 549<br>11 155 -138<br>12 190 -162<br>13 -25 13  | 6 187 204<br>7 134 -147<br>8 49 54<br>9 -27 -39<br>10 43 55       | 0 42 54<br>1 -25 0<br>2 -25 -17<br>3 -26 10<br>4 -26 -14                                                         | H -8, K 2<br>1 82 71<br>2 -28 15                                  | 18 -26 -48<br>19 -25 -27<br>20 -25 53<br>21 153 138<br>22 99 -90     | 20 -25 10<br>21 95 114<br>22 -26 -14<br>H= 4, K= 2               | 10 -20 -33<br>17 30 -34<br>18 -26 -7<br>19 -26 -8                | 2 -28 7<br>3 -29 54<br>5 127 -146<br>4 61 -46                                 | -20 -60<br>• 217 205<br>10 -28 -27<br>11 113 -101                   | -23 +<br>-23 -22 -23 -24 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 |
| 2 60 73<br>4,194 -174<br>6 53 62<br>6 107 69                        | 10 142 -134<br>12 39 10<br>14 179 -101<br>14 -29 -13<br>18 70 98    | 3 -26 14<br>4 -26 -12<br>5 -26 -1<br>6 -26 35<br>7 -25 27        | 1 -28 -45<br>2 272 244<br>3 49 74<br>4 84 -87                         | 15 184 174<br>16 534 508<br>17 268 268<br>18 160 -162<br>19 212 -198 | 12 61 -77<br>13 91 97<br>14 76 -98<br>15 141 -152<br>14 143 149   | H= 13, K= 1<br>0 -24 -13<br>1 -25 -40                                                                            | 4 102 -122<br>5 91 -100<br>6 -29 52<br>7 241 242<br>8 -29 -27     | 24 46 42<br>25 -25 26<br>26 -26 31<br>27 41 44                       | 0 -24 -37<br>1 91 94<br>2 426 379<br>3 389 -348<br>4 112 109     | 1 -26 20<br>2 -26 16<br>3 -26 -6<br>4 -25 -23                    | 8 -28 -10<br>• -20 28<br>10 45 -74<br>11 118 -146<br>12 155 -162              | 13 155 -169<br>14 130 -128<br>15 150 129<br>14 -25 1<br>17 124 -108 | 4 -25 19<br>5 -25 -5<br>6 -25 4<br>7 -25 40<br>4 -25 24          |
| 10 197 161<br>12 -27 -46<br>14 -26 -9<br>16 215 -223<br>18 149 137  | 20 344 -347<br>22 53 -19<br>24 84 -81<br>24 44 19                   | • -25 0<br>• -25 -19<br>10 -25 13<br>11 -25 -30<br>12 -25 22     | 5 125 128<br>6 -28 -31<br>7 -28 -27<br>8 -24 25<br>9 74 80            | 20 63 -65<br>21 49 51<br>22 -25 27<br>23 -25 -15<br>24 -25 -15       | 17 188 197<br>18 -25 17<br>19 -25 2<br>20 -25 -48<br>21 43 -53    | 2 -26 -1<br>H= -14, K= 2<br>5 -26 39                                                                             | 9 -28 64<br>10 140 -158<br>11 -26 -2<br>12 -28 -38<br>13 -27 51   | N= -2, K= 2<br>1 206 -193<br>2 -24 1<br>3 150 164                    | 5 199 -183<br>8 66 -75<br>7 -28 5<br>8 -28 38<br>9 -28 56        | 5 -25 -26<br>6 -25 -12<br>7 59 45<br>8 -25 -10<br>9 -25 -2       | 13 145 141<br>14 63 62<br>15 50 75<br>16 171 180<br>17 129 -131               | 18 -25 -2<br>19 -25 47<br>20 -25 25<br>21 -25 0<br>22 -25 -24       | • -25 3<br>10 -25 -5<br>11 -26 20<br>12 -26 25                   |
| 20 72 -62<br>22 41 -51<br>24 47 92<br>26 60 -54<br>28 56 -30        | H+ 1, K+ 0<br>0 5C7 -524<br>2 473 562<br>4 590 475                  | 13 -25 37<br>14 -25 -6<br>15 45 17<br>16 45 -28<br>17 -25 -6     | 10 149 -144<br>11 341 -369<br>12 218 240<br>13 118 143<br>14 132 -154 | 25 -25 -21<br>26 -25 27<br>27 43 43<br>28 -26 -14                    | 22 -26 12<br>23 -26 42<br>He 4, K* 1                              | 6 53 54<br>7 67 66<br>8 -26 -37<br>9 -26 -43<br>10 -26 -10                                                       | 14 66 93<br>15 40 -67<br>16 81 87<br>17 -25 -31<br>18 86 -95      | 4 173 -150<br>5 103 -119<br>6 183 173<br>7 343 320<br>8 32 -59       | 10 184 -177<br>11 88 -86<br>12 41 -48<br>13 -25 -21<br>14 -25 -6 | 10 -25 -1<br>11 -25 -32<br>12 -25 -14<br>13 37 40<br>14 43 52    | 18 55 76<br>19 165 166<br>20 -25 13<br>21 56 -57<br>22 -25 -6                 | 23 -26 -19<br>H= 1, K= 3<br>0 128 -118                              | H= 9, E= 3<br>0 -25 43<br>1 41 -79<br>2 -25 -36                  |
| H= -9, K= 0<br>-2 96 99<br>+ 127 115                                | 6 440 460<br>8 61 -72<br>10 340 364<br>12 468 -510<br>14 118 119    | 18 58 52<br>19 -26 25<br>20 43 -27<br>21 56 48<br>22 -26 -36     | 15 -28 6<br>16 178 -180<br>17 -27 22<br>18 -26 .23<br>19 -25 4        | H= -2, K= 1<br>1 143 -140<br>2 552 536<br>3 258 -259                 | 0 793 -791<br>1 261 -255<br>2 283 304<br>3 -26 34<br>4 103 119    | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                             | 19 -25 39<br>20 -25 -16<br>21 60 -71<br>22 -25 30<br>23 -25 39    | 9 262 261<br>10 178 -161<br>11 86 -79<br>12 252 238<br>13 327 281    | 13 -25 29<br>16 -25 -14<br>17 64 -75<br>18 -25 -6<br>19 -25 40   | 15 -25 -32<br>16 -25 2<br>17 -25 -4<br>18 -25 -10<br>19 -26 41   | 23 -25 -28<br>24 -23 0<br>25 63 65<br>26 -26 -2                               | 1 146 133<br>2 -25 40<br>3 -26 -46<br>4 155 -153<br>5 77 -88        | 3 -25 34<br>4 -25 15<br>5 64 70<br>6 -25 3<br>7 19 -57           |
| 8 289 -265<br>10 411 397<br>12 -29 45<br>14 147 180                 | 18 65 -72<br>20 -25 -29<br>22 -25 -20<br>24 -25 -25                 | H= -13, K= 1                                                     | 20 32 30<br>21 -25 4<br>22 54 -65<br>23 -25 -6<br>24 19 19            | 5 -27 LS<br>247 -249<br>7 121 -133<br>233 232                        | 5 147 201<br>6 187 -185<br>7 90 -48<br>8 160 179<br>9 -28 45      | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                            | 25 67 76<br>26 62 -68<br>27 61 -61<br>28 -28 30                   | 14 -28 -34<br>15 -29 -13<br>16 166 181<br>17 67 86<br>18 90 85       | 20 -26 14<br>H= 5, K= 2<br>0 212 197                             | 20 -20 -33<br>21 39 -33<br>22 -24 -12<br>H= -11, K= 3            | 1 -28 32<br>2 44 -64<br>3 68 -74                                              | 7 -28 63<br>8 -28 -53<br>9 119 -113<br>10 -28 63                    | + -26 -25<br>H= 10, t= 3                                         |
| 16 270 -274<br>20 46 47<br>22 41 46<br>24 103 -107<br>25 -25 -34    | 2, K= 0<br>0 578 -545<br>2 327 374<br>4 582 -736                    | 3 44 -40<br>4 -25 0<br>5 41 -38<br>4 -25 -1<br>7 -25 30          | 26 -25 34<br>27 -25 -15<br>28 55 -62<br>29 -26 -42                    | 10 191 -201<br>11 259 -264<br>12 196 170<br>13 330 -305              | 11 -24 -50<br>12 62 -03<br>13 -25 26<br>14 -25 26                 | He -13, KH 2<br>1 -26 -18<br>2 -26 21<br>3 -26 -18                                                               | NN -7, KN 2<br>1 121 119<br>2 -28 -31<br>3 291 -291               | 20 -25 -29<br>21'-25 -12<br>22 -25 -18<br>23 55 -50<br>24 51 -50     | 2 115 -112<br>3 -27 -57<br>4 -28 -51<br>5 395 -369<br>4 107 -107 | 1 -25 -3                                                         | 5 67 -61<br>6 -20 -50<br>7 261 272<br>8 -20 -6<br>9 225 -261                  | 12 93 104<br>13 -25 8<br>14 -25 34<br>15 46 -72<br>14 -25 -51       | 1 -25 34<br>2 -25 -1<br>3 -25 -15<br>4 -25 -35<br>5 -24 -38      |
| 28 68 63<br>Hm -8, K+ 0<br>2 322 285                                | 6 46 68<br>8 728 750<br>10 168 -162<br>12 244 -231<br>14 348 349    | 8 -25 14<br>9 43 51<br>10 99 96<br>11 41 4<br>12 -25 -16         | H= -7, K= 1<br>1 40 61<br>2 94 -93<br>3 313 -295                      | 15 201 165<br>16 213 -212<br>17 -28 29<br>18 198 163<br>19 92 93     | 16 57 -69<br>17 50 -62<br>18 42 -55<br>19 -25 -3<br>20 56 62      | 4 -25 -5<br>5 -25 -4<br>6 -25 -10<br>7 -23 17<br>6 48 55                                                         | 4 148 160<br>5 141 152<br>6 202 -284<br>7 114 -109<br>8 -28 -45   | 25 -25 -0<br>26 39 -48<br>M= -1, K= 2                                | 7 -28 19<br>8 94 99<br>9 -26 -35<br>10 67 82<br>11 -25 -9        | 6 -25 18<br>7 -25 -15<br>8 -25 0<br>9 59 -57<br>10 -25 23        | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                         | 17 92 89<br>18 -25 -32<br>19 -25 -17<br>20 -25 -16<br>21 37 -55     | 6 -26 -6<br>7 -26 29<br>H= 11, K= 3                              |
| + -27 -23<br>• 243 -225<br>6 185 174<br>10 117 118<br>12 -28 -13    | 16 47 -59<br>18 -25 45<br>20 147 162<br>22 60 -63<br>24 55 47       | 13 37 20<br>14 46 -57<br>15 -25 -16<br>16 80 82<br>17 -25 14     | 4 94 98<br>5 42 -58<br>4 -25 35<br>7 242 -212<br>8 140 -141           | 20 155 150<br>21 134 130<br>22 -25 -1<br>23 49 59<br>24 -25 -2       | 21 -26 -29<br>He 5, Ke 1<br>0 100 81                              | 9     -25     -19       10     -25     21       11     75     65       12     -25     -20       13     -25     4 | 9 110 -148<br>10 92 109<br>11 81 107<br>12 147 -104<br>13 149 199 | 1 541 484<br>2 470 -426<br>3 398 -367<br>4 41 47<br>5 135 -131       | 12 34 -56<br>13 -25 28<br>14 98 -110<br>15 39 -47<br>16 37 43    | 11 -25 41<br>12 -25 -16<br>13 -25 -8<br>15 -25 -37<br>15 -25 34  | 15 93 95<br>16 138 -149<br>17 89 77<br>18 -25 12<br>19 74 -73                 | 22 -26 9<br>H= 2, K= 3<br>0 71 -67                                  | 0 -25 20<br>1 -25 12<br>2 -26 21<br>3 -26 2<br>4 -26 41          |
| 10 -28 2<br>10 104 109<br>10 50 -51<br>20 -25 2<br>22 170 -179      | H= 3, K= 0<br>0 443 -447<br>2 339 -334                              | 18 -25 -1<br>19 -25 -28<br>20 -25 -12<br>21 -25 -17<br>22 -25 6  | 9 111 -125<br>10 153 154<br>11 94 -72<br>12 183 210<br>13 -28 55      | 25 -25 -21<br>26 -25 -24<br>27 -26 25<br>He -1, Ke 1                 | 1 192 100<br>2 125 -122<br>3 -24 34<br>4 140 -142<br>5 -27 -7     | 14 -25 -16<br>15 -25 -63<br>16 -25 19<br>17 -25 47<br>16 -25 -16                                                 | 14 259 -278<br>15 77 95<br>16 63 93<br>17 75 94<br>18 -2545       | 6 340 345<br>7 602 544<br>8 229 197<br>9 250 -236<br>10 124 110      | 17 -25 -22<br>18 -26 -27<br>19 -26 20<br>H= 6, K= 2              | 10 -25 -0<br>17 -25 -9<br>14 -25 -8<br>19 -25 -20<br>20 -25 10   | 20 - 25 = 0<br>21 - 25 = 13<br>22 - 25 = 42<br>23 - 25 = 14<br>24 - 25 = -14  | 2 100 95<br>3 281 -234<br>4 -27 36<br>5 219 202                     | H* 12, K* 3<br>0 -26 -4                                          |
| 26 72 73<br>28 -25 -7<br>He -7, K= 0                                | 6 563 614<br>8 410 -451<br>10 348 358<br>12 262 273<br>14 -27 3     | 24 -26 -14<br>25 -26 2<br>He -12, Ke 1                           | 15 127 -141<br>16 54 69<br>17 47 -47<br>16 127 152<br>19 197 212      | 1 62 105<br>2 488 -514<br>3 164 169<br>6 560 -577<br>5 496 -591      | 7 -28 -21<br>8 -28 0<br>9 62 70<br>10 218 -246<br>11 199 -192     | 20 -26 22<br>21 -26 26<br>22 -26 -22<br>23 -26 19                                                                | 20 40 71<br>21 -25 -10<br>22 81 82<br>23 103 104                  | 12 240 260<br>13 -24 -39<br>14 126 -115<br>15 71 -83<br>16 -27 -17   | 0 54 -57<br>1 55 75<br>2 41 -41<br>3 73 -74<br>4 353 345         | 22 -26 6<br>23 96 82<br>26 49 32<br>He -10, Ke 3                 | 24 -26 -7<br>H= -4, K= 3<br>1 253 -239                                        | 7 -28 -42<br>8 73 72<br>9 -28 0<br>10 -27 28<br>11 170 143          | 7 -26 -17<br>8 52 45<br>9 52 -53<br>10 -26 -37                   |
| 2 383 360<br>4 448 -406<br>6 204 198<br>8 290 265<br>10 425 -409    | 16 -25 18<br>18 -25 -6<br>20 -25 -18<br>22 -26 9                    | 1 -25 18<br>2 -25 -16<br>3 60 61<br>4 38 44<br>5 -25 -4          | 20 244 -259<br>21 127 -125<br>22 103 104<br>23 52 63<br>24 -25 -2     | 6 407 407<br>7 339 325<br>8 690 -669<br>9 69 -74<br>10 102 -81       | 12 105 106<br>13 -25 -7<br>14 -25 20<br>15 -25 19<br>16 -25 -36   | H= -12, K= 2<br>1 -25 -50<br>2 -25 3<br>3 75 68                                                                  | 25 -25 -27<br>26 38 48<br>27 -26 17<br>28 -26 20                  | 17 106 110<br>16 -25 9<br>19 -25 -19<br>20 -25 -5<br>21 46 -51       | 5 330 299<br>6 -27 -56<br>7 156 -148<br>8 132 -126<br>9 -25 -39  | 1 80 -78<br>2 -25 42<br>3 77 84<br>4 -25 -19                     | 2 -27 -8<br>3 -27 -16<br>4 -27 -11<br>5 115 133<br>6 -27 -66                  | 12 -25 30<br>13 70 -72<br>14 -25 51<br>15 -25 -27<br>16 71 82       | 11 41 49<br>12 -26 39<br>13 -26 -7<br>14 -26 -18<br>15 -26 -24   |
| 12 52 -52<br>14 85 -42<br>14 129 -141<br>18 42 85<br>20 105 118     | H= 4, K= 0<br>0 288 -253<br>2 201 327<br>4 233 249                  | 6 84 -77<br>7 111 -109<br>8 48 -57<br>9 -25 -19<br>10 65 65      | 25 37 42<br>26 -25 1<br>27 -25 44<br>28 86 95<br>29 -26 18            | 11 94 92<br>12 219 221<br>13 92 93<br>14 -27 -43<br>15 76 79         | 17 53 -44<br>18 -25 8<br>19 -24 27<br>20 -24 -23                  | 4 -25 -8<br>5 -25 -48<br>6 -25 -29<br>7 47 -49<br>8 -25 44                                                       | H* -6. K= 2<br>1 203 -264<br>2 103 100<br>3 64 77                 | 22 -25 21<br>23 122 102<br>24 -25 4<br>25 -24 -23<br>24 -26 1        | 10 36 41<br>11 -25 6<br>12 -25 1<br>13 108 -104<br>14 -25 11     | 5 -25 -19<br>6 -25 -15<br>7 105 -102<br>8 -25 16<br>9 -25 55     | 7 49 -75<br>8 74 -95<br>9 -26 42<br>10 94 -109<br>11 -28 38                   | 17 62 48<br>18 -25 -10<br>19 -25 -31<br>20 -25 -10<br>21 -26 -40    | H= -11, K= 4<br>1 -26 -34<br>2 -26 -19                           |
| 22 80 -74<br>24 150 130<br>24 -44 -36<br>25 -25 22<br>30 48 44      | 6 -24 9<br>8 198 -208<br>10 -28 0<br>12 -27 -31<br>14 82 -88        | 11 65 62<br>12 -25 -20<br>13 116 -116<br>16 99 102<br>15 56 52   | N* -6, K* 1<br>1 130 -121<br>2 223 195                                | -16 63 -62<br>17 136 -139<br>18 194 185<br>19 -25 11<br>29 -25 0     | H- 6, K- 1<br>0 102 106<br>1 62 77<br>2 212 -197                  | 9 69 78<br>10 -25 -35<br>11 108 -116<br>12 60 66<br>13 56 58                                                     | * -26 **<br>5 112 115<br>6 337 -308<br>7 126 -163<br>8 -27 -18    | H= 0, K= 2<br>0 197 -183<br>1 888 -809                               | 15 79 76<br>16 -25 12<br>17 -26 25<br>H= 7, K= 2                 | 10 -25 13<br>11 -25 37<br>12 -25 13<br>13 126 -136<br>14 -25 -22 | 12 134 -127<br>14 -27 -16<br>15 91 -102<br>16 110 -107                        | He 3, Ke 3<br>0 106 -108<br>1 345 -321                              | 4 -26 -4<br>5 -26 17<br>6 -26 18<br>7 -25 2                      |
| H= -6, E= 0<br>2 806 -722<br>4 50 -45                               | 14 176 -142<br>20 115 117<br>22 -24 0                               | 17 -25 -10<br>18 -25 -10<br>19 -25 -35<br>20 94 96               | 4 329 304<br>5 265 278<br>6 140 -139<br>7 31 -54                      | 21 -23 -19<br>23 -25 -34<br>24 140 136<br>25 41 -11                  | 4 297 304<br>5 110 118<br>6 48 60<br>7 57 69                      | 15 42 55<br>16 40 -47<br>17 77 -73<br>18 -25 1                                                                   | 10 61 -102<br>11 -26 -33<br>12 -26 -3<br>13 205 -304              | 3 49 75<br>4 336 339<br>5 74 -343<br>7 444 -343                      | 0 49 -66<br>1 -28 -30<br>2 -26 17<br>3 128 122<br>4 50 -67       | 16 -25 32<br>17 -25 11<br>18 -25 0<br>19 -25 -33<br>20 -25 -21   | 18 -25 -16<br>19 140 -124<br>20 82 -76<br>21 145 122<br>22 -25 7              | 3 433 376<br>4 161 153<br>5 104 116<br>6 -28 -35<br>7 224 -208      | 9 -25 9<br>10 -25 0<br>11 -25 -19<br>12 -25 19<br>13 -25 -24     |
| 8 172 -157<br>10 96 99<br>12 382 358<br>14 314 -302<br>14 515 500   | 0 421 -420<br>2 44 52<br>4 40 42<br>4 331 -335                      | 22 -25 -16<br>23 -25 -16<br>24 -25 -16<br>25 -26 -24<br>26 80 45 | 9 269 -290<br>10 53 66<br>11 130 155<br>12 116 -133<br>13 144 -143    | 27 - 26 - 50<br>H= 0, K= 1<br>1 329 334                              | 9 137 -145<br>10 57 47<br>11 134 128<br>12 42 57<br>13 34 44      | 20 -25 -4<br>21 -4 47<br>22 89 -74<br>23 -24 0<br>24 -24 4                                                       | 15 445 472<br>14 -24 -12<br>17 -27 -54<br>18 58 -42<br>19 -25 -37 | 8 -23 -9<br>9 62 83<br>10 139 -147<br>11 -27 -37<br>12 -28 34        | 5 -25 30<br>6 135 123<br>7 107 108<br>8 40 50<br>9 49 63         | 21 59 50<br>22 -25 -40<br>23 -26 -30<br>24 34 -38<br>25 42 14    | 23 -25 6<br>24 62 55<br>25 60 -43<br>26 -26 3                                 | 8 -27 -49<br>9 60 72<br>10 -25 37<br>11 -25 -11<br>12 43 47         | 14 -26 5<br>15 -26 44<br>16 -26 -13<br>17 -26 35<br>18 -26 -2    |
| 16 78 -74<br>20 144 -134<br>22 184 164<br>24 77 -73<br>26 -25 -22   | 173 176<br>10 101 -05<br>12 -25 20<br>14 -25 37<br>16 -25 -2        | 27 82 62<br>H= -11, K+ 1<br>1 67 -66                             | 14 101 107<br>15 -20 -16<br>16 -28 -4<br>17 -20 -42<br>18 69 -45      | 2 147 -192<br>3 349 354<br>4 502 464<br>5 218 220<br>4 405 -821      | 14 -25 -28<br>15 -25 3<br>14 -25 10<br>17 -25 -11<br>18 -24 -3    | 25 -26 16<br>H= -11, K= 2<br>1 -25 34                                                                            | 20 -25 -14<br>21 104 104<br>22 -25 37<br>23 44 -45<br>24 -25 4    | 13 185 -196<br>14 216 197<br>15 -27 -31<br>16 -26 -15<br>17 % 103    | 10 -25 14<br>11 -25 43<br>12 -25 -7<br>13 49 -74<br>14 -25 27    | H+ -9, K+ 3<br>1 -25 45<br>2 -25 9                               | He -3, Ke 3<br>1 -26 13<br>2 56 46<br>3 401 339                               | 13 -25 47<br>14 -25 -13<br>15 67 70<br>16 -25 58<br>17 -25 -32      | 19 -26 -90<br>H= -10, K= 4<br>1 -25 17                           |
| 20 -25 22<br>H+ -5, K+ 0<br>2 -24 34                                | 10 78 -109<br>20 -26 -29<br>He 6, K- 0                              | 2 -25 0<br>3 119 109<br>4 196 -186<br>5 48 -60<br>6 124 132      | 19 -27 -9<br>20 158 142<br>21 108 103<br>22 89 -79<br>23 74 76        | 7 112 45<br>8 537 -538<br>9 156 -124<br>10 282 262<br>11 360 367     | H= 7, K= 1<br>0 144 -145<br>1 157 -140                            | 2 -25 -42<br>3 -25 -7<br>4 -25 33<br>5 -25 -57<br>6 62 37                                                        | 23 -25 31<br>26 -25 26<br>27 -26 6<br>28 -26 10                   | 10 -25 -32<br>19 159 -152<br>20 -25 -1<br>21 56 59<br>22 46 -56      | 15 -26 11<br>16 -26 -21<br>H= 6, K= 2                            | 5 -25 -41<br>5 -25 -41<br>6 45 41<br>7 -25 -21                   | -20 30<br>5 309 -373<br>6 121 -125<br>7 45 -94<br>8 -27 31                    | 19 -26 8<br>20 51 59<br>He 4, K- 3                                  | 3 -25 10<br>4 -25 -10<br>5 -25 -39<br>4 -25 -40                  |
| * 073 043<br>* 164 -167<br>* 805 783<br>10 304 278<br>12 506 -492   | 0 103 162<br>2 462 437<br>4 352 -352<br>6 51 64<br>8 -28 -5         | 8 -25 -1<br>9 42 -45<br>10 139 -139<br>11 -25 -24                | 26 129 -126<br>25 67 -50<br>26 39 39<br>27 65 66<br>28 -26 28         | 12 208 -273<br>13 151 -144<br>14 211 -219<br>15 88 -77<br>14 -28 48  | 2 100 92<br>3 -28 30<br>4 -26 -18<br>5 84 89<br>6 -26 -22         | 7 -25 1<br>8 -25 -55<br>9 43 -57<br>10 -25 15<br>11 -25 -11                                                      | 1 244 252<br>2 110 112<br>3 117 117                               | 25 -26 -25<br>25 -24 -25<br>25 -24 0<br>He 1, Ke 2                   | 1 42 57<br>4 -25 4<br>3 -25 -1<br>4 -25 -1                       | 9 -25<br>10 -25 -11<br>11 51 -41<br>12 -25 21                    | 10 -28 54<br>11 299 -269<br>12 -28 -4<br>13 196 140                           | 0 111 -107<br>1 217 197<br>2 221 -209<br>3 273 -257<br>4 274 -354   | • -25 -8<br>• -25 -5<br>10 -25 -17<br>11 -25 -17                 |
| 16 158 162<br>18 171 -153<br>20 88 -175<br>22 180 175<br>24 101     | 12 94 42<br>14 83 -94<br>16 38 46<br>18 118 130                     | 13 46 -52<br>14 -25 6<br>15 -25 -5<br>16 47 48                   | x -2, 14<br>x -5, x - 1<br>1 334 312                                  | 18 196 -214<br>19 210 -212<br>20 198 189<br>21 125 -128              | + 143 179<br>+ 143 179<br>-25 3<br>10 -25 -42<br>11 -25 -27       | 14 -25 -36<br>14 -59 -36<br>15 -25 -43<br>14 -25 -25                                                             | 5 207 -186<br>6 231 247<br>7 192 182<br>8 -25 5<br>9 221 -25      | 0 117 126<br>1 79 -65<br>2 160 -160<br>3 263 275<br>4 327 -133       | 6 86 93<br>7 97 96<br>8 68 -55<br>9 63 -62<br>10 -25 7           | 14 -25 -4<br>15 -25 -4<br>17 -25 -5<br>18 -21 -4                 | 15 -24 25<br>16 -25 1<br>17 157 -145<br>18 -25 -21<br>18 -25 -21<br>10 -25 17 | 5 127 140<br>6 121 127<br>7 26 97<br>8 75 74<br>9 74 -71            | 13 74 67<br>14 -25 10<br>15 -25 -24<br>16 -25 21<br>17 81 -70    |
| 20 105 -159                                                         | N* 7, 1- 0                                                          | 10 -25 +1<br>10 -25 -20                                          |                                                                       | 23 40 50<br>24 117 -115                                              |                                                                   |                                                                                                                  | 10 76 98<br>11 73 -96                                             | 5 93 -94<br>5 75 86                                                  | 11 -25 13<br>12 -25 42                                           | 19 47 51<br>20 -25                                               | 20 16 41                                                                      | 10 44 -47                                                           | 18 -26 -14<br>19 37 48                                           |

1390

Table 3 (cont.)

| L FO F                                | C L FO F | C L FO FC | L FQ FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L FO FC | L FO FC                                               | L FO FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L FO FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 FO FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L FO FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L FO FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L FO FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L FO FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L FG FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |          |           | <ul> <li>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E       | L 100 FC 0 0 FC 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | L 760 FC<br>1 760                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>x 3. 43. 43. 43. 44. 44. 44. 44. 44. 44.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 </td <td>L FG FG<br/>H 73, K 73<br/>1, K 73<br/>1, K 74<br/>1, K 74</td> <td>L FO FO FO<br/>10 - 50 - 50<br/>10 - 50<br/>10</td> <td>ro ro r</td> | L FG FG<br>H 73, K 73<br>1, K 73<br>1, K 74<br>1, K 74 | L FO FO FO<br>10 - 50 - 50<br>10 | ro r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • • • • • • • • • • • • • • • • • • • |          |           | Image: Section 1         Section 2           0         111         -110           2         -28         53           2         -28         -24           3         100         -27           4         100         -27           5         100         -147           7         -28         -32           8         12         -28           9         100         -47           9         100         -47           10         -27         -10           11         -26         -48           10         -27         -10           11         -27         -10           12         -27         -10           13         -27         -10           14         -27         -10           15         -27         -10           16         -27         -10           16         -27         -10           16         -27         -10           16         -27         -10           17         -28         49           10         -76         74           21 |         | 14 - 24 - 44 - 44 - 44 - 44 - 44 - 44 -               | 7 -26 -9<br>- 26 -9<br>- 26 -7<br>- 27 -7<br>- | Image: 1         -10         -23         27           Image: 2         -23         27         -23         27           Image: 2         -23         20         -23         21           Image: 2         -23         -21         -23         21           Image: 2         -23         -21         -23         -21           Image: 2         -23         -21         -23         -21           Image: 2         -23         -24         -23         -21           Image: 2         -23         -21         -23         -21           Image: 2         -23         -21         -23         -21           Image: 2         -23         -21         -23         -21           Image: 2         -24         -25         -21         -23           Image: 2         -25         -21         -23         -21           Image: 2         -24         -20         -21         -21           Image: 2         -24         -24         -24         -24 | 1         -3           1         -4           1         -4           1         -4           2         -3           2         -3           3         -3           4         -4           7         -4           8         -10           9         -10           10         -20           11         -20           12         -20           13         -20           14         -20           15         -20           16         -20           17         -20           18         -20           19         -20           10         -20           10         -20           11         -20           12         -20           14         -20           14         -20           14         -20           14         -20           14         -20           14         -20 | 1         0.0         0.0           1         1.0         0.0         0.0           1         1.0         0.0         0.0           1         1.0         0.0         0.0           1         1.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0         0.0         0.0           1         0.0 </td <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>1 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 2</td> <td>-28         14           H-         -25         -7           -23         31         -7           -24         -7         -7           -25         31         -3           -26         -7         -7           -26         -1         -7           -26         -1         -7           -26         -7         -7           -7         -7         -8         -8           -7         -7         -7         -7           -26         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7</td> | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -28         14           H-         -25         -7           -23         31         -7           -24         -7         -7           -25         31         -3           -26         -7         -7           -26         -1         -7           -26         -1         -7           -26         -7         -7           -7         -7         -8         -8           -7         -7         -7         -7           -26         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7         -7         -7           -7         -7 |

Table 4. Coordination about the K<sup>+</sup> ion

|      | Position | Distance    |
|------|----------|-------------|
| O(1) | A(000)   | 2·904 (8) Å |
| O(1) | A(010)   | 2.943 (8)   |
| O(2) | A(000)   | 3.097 (6)   |
| O(2) | A(010)   | 2.938 (6)   |
| O(3) | B(100)   | 2.858 (7)   |
| O(3) | B(010)   | 3.112 (7)   |
| O(2) | B(100)   | 2.910 (6)   |
| O(5) | C(000)   | 2.976 (6)   |
| N(4) | A(000)   | 3.108 (6)   |

\* The positions are given followed by the translations in x, y, z respectively. A is x, y, z; B is  $-x, \frac{1}{2}+y, \frac{1}{2}-z$ ; C is x,  $\frac{1}{2}-y, \frac{1}{2}+z$  where x, y, z refer to the coordinates given in Table 2.

The bond distances and angles in the anion are shown in Figs. 2 and 3. The C(1)–O(2) bond distance of 1.234(8) Å is close to the value for C=O found in ketones, aldehydes and carboxylic acids tabulated by Sutton (1965) which indicates that a strong interaction with the ring occurs on removal of the proton from O(2). A similar effect was found in potassium picrate by Maartmann-Moe (1969) where the corresponding C–O distance of 1.243 (7) Å is not significantly different from that observed in the present study. The question of whether a similar interaction is present in all phenol salts or only in polynitrophenol salts is unanswerable at present but further studies in this area are in progress.

The presence of C=O on the ring greatly perturbs the C-C bonds in the ring. The distortions are sufficiently large that the term 'benzene ring' seems inappropriate. As expected, the furazan ring introduces an asymmetry in the ring in comparison with the dimensions found in potassium picrate. The C-C bonds in the ring in K<sup>+</sup> HDNBF are longer on the average than those observed in potassium picrate. This observations must reflect the

greater electron withdrawing power of the furazan ring relative to a nitro group. A similar observation was made by Messmer & Palenik (1971). In fact, the dimensions of the furazan ring in the two studies are almost identical; the largest difference is 0.010 Å, suggesting that the electronic requirements of the furazan ring are satisfied at the expense of the rest of the molecule.

The two C-N (nitro) distances of 1.422 (9) and 1.436 (10) Å are intermediate compared to the C-N (nitro) distances (1.389 to 1.497 Å) found in other aromatic nitro compounds. A comparison of the values in other aromatic compounds suggests that the C-N bond depends on the strength of the interaction of the NO<sub>2</sub> group and the ring. The longer C-N bonds were found in *m*-dinitrobenzene (1.493 Å) by Trotter & Williston (1966) and in *m*-nitroperchlorylbenzene (1.497 Å) by Palenik, Donohue & Trueblood (1969), where the interaction is expected to be weak. Conversely, the shorter C-N distances of 1.389 and 1.436 Å in a Meisenheimer complex (Messmer & Palenik, 1971), 1.436 and 1.457 Å in potassium picrate (Maartmann-Moe, 1969), 1.42 and 1.43 Å in 1,3-diamino-2,4,6-trinitrobenzene (form I) (Holden, 1967), and 1.460 Å in pnitroaniline (Trueblood, Goldish & Donohue, 1961), were all found in compounds where a strong interaction with the ring was anticipated. The two nitro groups are very close to being coplanar with the ring [3° 48' for N(1)-O(3)-O(4) and 0° for N(2)-O(5)-(6) in spite of the presence of *ortho* substituent in both cases. The  $O(2) \cdots O(3)$  distance of 2.658(8) Å is shorter than the van der Waals contact, nevertheless the NO<sub>2</sub> group lies essentially in the plane of the ring.

The C-C-C angles in the ring also illustrate an interesting feature of the molecule. In all the other aromatic nitro compounds reported to date, the C-C(nitro)-C angle is always greater than 120°. Bailey & Prout (1965) and Carter, McPhail & Sim (1966) have suggested that an increased s-character in the C-C bonds causes the angle to open. The C(1)-C(2)-C(3) angle of  $124 \cdot 5(6)^{\circ}$ found in K<sup>+</sup>HDNBF is consistent with these previous observations. However, the C(3)-C(4)-C(5) angle of  $118 \cdot 4(6)^{\circ}$  is smaller, although perhaps not significantly so, than  $120 \cdot 0^{\circ}$ . This angle is also very close to the value of  $118 \cdot 5$  (4)° observed for the corresponding angle in the other benzfurazan structure by Messmer & Palenik (1971). Apparently, the five-membered furazan ring fused to the six-membered ring may constrain the angle so that the generalizations regarding the value of the C-C(nitro)-C angles may not be valid.

The 'benzene ring' and furazan ring are both planar (Table 5) within the accuracy of the present analysis. The two rings are folded slightly so that the angle between the normals is 1°, similar to the value of  $1 \cdot 2^\circ$  reported by Messmer & Palenik (1971) for a benzfurazan system. The two nitrogens of the nitro groups and the phenol oxygen are bent slightly out of plane of the 'benzene ring', presumably to minimize steric interactions with the corresponding *ortho* groups.

### Table 5. Least-squares planes

Deviations  $(Å \times 10^3)$  in boldface type indicate atoms which were used to define the plane.

|                   | (I)     | (II)           | (III)  | (IV)  |
|-------------------|---------|----------------|--------|-------|
| <b>C</b> (1)      | -015    |                |        |       |
| C(2)              | 016     |                | 069    |       |
| C(3)              | -003    |                |        |       |
| C(4)              | 010     |                |        | -012  |
| C(5)              | 009     | -003           |        |       |
| C(6)              | 003     | 002            |        |       |
| N(1)              | 085     |                | 000    |       |
| N(2)              | -032    | 000            |        | 000   |
| N(3)              | - 003   | 002            |        |       |
| N(4)              | -022    |                |        |       |
| O(2)              |         |                |        |       |
| O(3)              |         |                | 000    |       |
| O(4)              |         |                | 000    |       |
| O(5)              |         |                |        | 000   |
| O(6)              |         |                |        | 000   |
| O(7)              | -059    | -002           |        |       |
|                   | Paramet | ers of the pla | ane.*  |       |
| $A \times 10^{4}$ | 4876    | 4890           | 5528   | 5039  |
| $B \times 10^4$   | - 6749  | - 6626         | - 6068 | -6773 |
| $C \times 10^{4}$ | 5539    | 5673           | 5711   | 5361  |
| $D(\text{\AA})$   | 4.144   | 4.219          | 4.465  | 4.242 |

\* Equation of the plane in the form deviation  $(\text{\AA}) = AX + BY + CZ + D$  with X, Y, Z the coordinates of the atom in Å relative to a, b, c sin  $\beta$ .

There are three hydrogen atoms in the asymmetric unit (two from the water molecule and one on C(3) of the ring) and all apparently have contacts which suggest hydrogen bonding. The dimensions for the possible hydrogen bonds are tabulated in Table 6 and are shown as dotted lines in Fig. 1. The water molecule forms two hydrogen bonds to two different molecules. The hydrogen bond involving H(1) appears to be a weak but normal O-H···O hydrogen bond. The bond involving



Fig. 2. The atomic numbering and bond distances in the  $OC_6H(NO_2)_2N_2O$  anion. The estimated standard deviations are given in parentheses.



Fig. 3. The bond angles in the  $OC_6H(NO_2)_2N_2O$  anion. The estimated standard deviations are 0.6° except for N(3)–O(7)–N(4) which is 0.5° and C(2)–C(1)–O(2) and C(4)–C(5)–N(3) which are 0.7°.

Table 6. Intermolecular contacts involving the hydrogen atoms

|                           | Position of A                         | D-H  | $\mathbf{H}\cdots \mathbf{A}$ | $D \cdots A$ | $D-H\cdots A$ |
|---------------------------|---------------------------------------|------|-------------------------------|--------------|---------------|
| $D-\mathrm{H}\cdots A$    |                                       | (Å)  | (Å)                           | (Å)          | (°)           |
| $O(1)-H(1)\cdots O(6)$    | $x, \frac{1}{2} - y, \frac{1}{2} + z$ | 0.93 | 2.08                          | 2.986        | 165           |
| $O(1) - H(2) \cdots N(3)$ | $2-x, y-\frac{1}{2}, \frac{1}{2}-z$   | 0.85 | 2.28                          | 3.026        | 146           |
| $O(1) - H(2) \cdots O(6)$ | $2-x, y-\frac{1}{2}, \frac{1}{2}-z$   | 0.85 | 2.54                          | 3.069        | 122           |
| $C(3) - H(3) \cdots O(4)$ | 1 - x, -1 - y, -z                     | 0.99 | 2.42                          | 3.393        | 170           |

1392

H(2), O(1)–H(2)···N(3) has a relatively small O–H··· N angle but otherwise appears normal. The alternative for H(2), O(1)-H(2)···O(6) has a poor O-H···O angle and also the  $H \cdots O$  distance is very close to the value for a van der Waals contact. The third hydrogen H(3) bonded to C(3) of the ring has a relatively short  $C-H \cdots O$  contact, very suggestive of a hydrogen bond. The angles involving H(3) are all very reasonable for a hydrogen bond and the H(3) $\cdots$ O(4) distance of 2.42 A is less than that expected for a van der Waals contact. A similar C-H···O hydrogen contact was found in potassium picrate.\* Although the existence of C-H···O hydrogen bonds has been questioned by Donohue (1958), the present study (together with the potassium picrate example) suggests that  $C-H\cdots O$ hydrogen bonds may indeed exist in special cases.

We wish to thank the Defence Research Board of Canada and the National Research Council for financial support of this research at the University of Waterloo, Waterloo, Ontario, Canada. One of us (GJP) wishes to thank the U.S. Naval Weapons Center, Chi-

\* H. Cady first pointed out to one of us (GJP) that a possible  $C-H\cdots O$  hydrogen bond existed in our unpublished refinement of potassium picrate.

na Lake, California for the use of the diffractometer and Dr R. A. Henry of that center for the example.

#### References

- BAILEY, A. S. & PROUT, C. K. (1965). J. Chem. Soc. p. 4867.
- CARTER, O. L., MCPHAIL, A. T. & SIM, G. A. (1966). J. Chem. Soc. (A), p. 822.
- Destro, R., Gramaccioli, C. M. & Simonetta, M. (1968). Acta Cryst. B24, 1369.
- DONOHUE, J. (1968) in Structural Chemistry and Molecular Biology, p. 443. Ed. A RICH & N. DAVIDSON. San Francisco: W. H. Freeman and Company.
- HOLDEN, J. R. (1967). Acta Cryst. 22, 545.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 202, Birmingham: Kynoch Press.
- MAARTMANN-MOE, K. (1969). Acta Cryst. B25, 1452.
- MESSMER, G. G. & PALENIK, G. J. (1971). Acta Cryst. B27, 314.
- PALENIK, G. J., DONOHUE, J. & TRUEBLOOD, K. N. (1969). Acta Cryst. B24, 1139.
- SUTTON, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions. Supplement. Special Publication No. 18. London: The Chemical Society.
- TROTTER, J. & WILLISTON, C. S. (1966). Acta Cryst. 21, 285.
- TRUEBLOOD, K. N., GOLDISH, E. & DONOHUE, J. (1961). Acta Cryst. 14, 1009.

Acta Cryst. (1971). B27, 1393

## Die Struktur des Ammoniumparawolframates (NH<sub>4</sub>)<sub>10</sub>[H<sub>2</sub>W<sub>12</sub>O<sub>42</sub>]. 10H<sub>2</sub>O

VON RUDOLF ALLMANN

Mineralogisches Institut der Universität Marburg, 355 Marburg/Lahn, Deutschland

(Eingegangen am 17. Juli 1970)

Ammonium paratungstate,  $(NH_4)_{10}[H_2W_{12}O_{42}]$ .  $10H_2O$  crystallizes in space group Pbca: a = 19.07, b = 24.42, c = 10.915 Å, Z = 4,  $D_m = 4.13$ ,  $D_x = 4.23$  g.cm<sup>-3</sup>. The W atoms were located by a Patterson map, and the lighter atoms by a  $\Delta F$ -map. Using 3002 visually estimated reflexions, including 609 unobserved ones, the structure was refined to R = 8.5% (8.1% for observed reflexions only; isotropic temperature factors). The positional uncertainties are:  $\sigma(W) = 0.002$ ,  $\sigma(O) = 0.03$ ,  $\sigma(H_2O, NH_4^+) =$ 0.05 Å. The paratungstate ion  $[H_2W_{12}O_{42}]^{10-}$  (not  $[H_{10}W_{12}O_{46}]^{10-}$  as earlier formulated) consists of 4 corner-sharing groups, each containing 3 edge-sharing  $WO_6$  octahedra. The oxygen atoms of the anion are hexagonal close packed (average O-O 2.78 Å, 2.49-2.97 Å). Six octahedra have one unshared oxygen and the other six have two unshared oxygen atoms. The W atoms are shifted into the direction of these unshared oxygen atoms away from the centres of the octahedra by 0.33-0.37 Å.W-W (edgesharing) = 3.34, W-W (corner-sharing) = 3.75, Å, W-O = 1.70-2.32 Å, average 1.96 Å. By estimation of the W-O bond strengths, the non-acid protons were located in the inside of the isopolyanion in accordance with the results of some recent H nuclear magnetic resonance broad-line spectra. The anion has pseudo-symmetry 2/m, which is also obeyed in part by the NH<sub>4</sub> environment. Via ammonium ions each complex  $[H_2W_{12}O_{42}]^{10-}$  is connected to 10 other complexes. All N-N distances are greater than 3.6 Å. A probable network of hydrogen bonds is suggested. The shortest possible H-bonds are: OH  $\cdots$  O =  $2 \cdot 64$  Å and NH  $\cdots$  O =  $2 \cdot 69$  Å.

#### Einleitung

Die erste röntgenographische Strukturuntersuchung eines Parawolframates erfolgte 1952 (Lindqvist) am

5Na<sub>2</sub>O.12WO<sub>3</sub>.28H<sub>2</sub>O mit Hilfe einer Pattersonsynthese. Aus dieser konnten die Lagen der Wolframatome des Isopolyanions eindeutig ermittelt werden. Die Lage der Sauerstoffatome wurde aber nur aus der